Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus

نویسندگان

  • Wenfang Peng
  • Huan Li
  • Søren Hallstrøm
  • Nan Peng
  • Yun Xiang Liang
  • Qunxin She
چکیده

Bacteria and Archaea encode clustered, regularly interspaced, short palindromic repeat (CRISPR) systems to confer adaptive immunity to invasive viruses and plasmids. Recent studies of CRISPR systems revealed that diverse CRISPR-associated (Cas) interference modules often coexist in different organisms but functions of cas genes have not been dissected in any of these systems. The crenarchaeon Sulfolobus islandicus encodes three distinct CRISPR interference modules, including a type IA system and two type IIIB systems: Cmr-α and Cmr-β. To study the genetic determinants of protospacer-adjacent motif (PAM)-dependent DNA targeting activity and mature CRISPR RNA (crRNA) production in this organism, mutants deleting individual genes of the type IA system or removing each of other Cas modules were constructed. Characterization of these mutants revealed that Cas7, Cas5, Cas6, Cas3' and Cas3" are essential for PAM-dependent DNA targeting activity, whereas Csa5, along with all other Cas modules, is dispensable for the targeting in the crenarchaeon. Cas6 is implicated as the only enzyme for pre-crRNA processing and the crRNA maturation is independent of the DNA targeting activity. Importantly, we show that Cas7 and Cas5 are essential for stabilizing the processing intermediates and mature crRNAs, respectively, and that depleting the helicase or nuclease domain of Cas3 leads to the accumulation of processing intermediates. This demonstrates that in addition to Cas6, other Cas proteins of an archaeal type IA system also contribute to crRNA processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobale...

متن کامل

Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus

CRISPR-Cas system provides the adaptive immunity against invading genetic elements in prokaryotes. Recently, we demonstrated that Csa3a regulator mediates spacer acquisition in Sulfolobus islandicus by activating the expression of Type I-A adaptation cas genes. However, links between the activation of spacer adaptation and CRISPR transcription/processing, and the requirement for DNA repair gene...

متن کامل

A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction

The CRISPR (clustered regularly interspaced short palindromic repeats) system protects archaea and bacteria by eliminating nucleic acid invaders in a crRNA-guided manner. The Sulfolobus islandicus type III-B Cmr-α system targets invading nucleic acid at both RNA and DNA levels and DNA targeting relies on the directional transcription of the protospacer in vivo. To gain further insight into the ...

متن کامل

An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference

CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduce...

متن کامل

Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus.

Sulfolobus belongs to the hyperthermophilic archaea and it serves as a model organism to study archaeal molecular biology and evolution. In the last few years, we have focused on developing genetic systems for Sulfolobus islandicus using pyrEF as a selection marker and versatile genetic tools have been developed, including methods for constructing gene knockouts and for identifying essential ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013